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D
ear Student,
They say you can’t judge a book by its cover. Still, you may be wondering 
why we chose to put peeling wallpaper on the cover of a chemistry book. 

Actually, the cover photo is not wallpaper but the bark of a Pacific Madrone tree, 
Arbutus menziesii. The illustration shows a molecular view of the cellulose that is 
a principal component of tree’s trunk, including its peeling bark and the heart-
wood beneath it.

Our cover illustrates a central message of this book: the properties of sub-
stances are directly linked to their atomic and molecular structures. In our book 
we start with the smallest particles of matter and assemble them into more elabo-
rate structures: from subatomic particles to single atoms to monatomic ions and 
polyatomic ions, and from atoms to small molecules to bigger ones to truly gigan-
tic polymers. By constructing this layered particulate view of matter, we hope our 
book helps you visualize the properties of substances and the changes they 
undergo during chemical reactions.

With that in mind, we begin each 
chapter with a Particulate Review and 
Particulate Preview on the very first 
page. The goal of these tools is to pre-
pare you for the material in the chapter. 
The Particulate Review assesses impor-
tant prior knowledge that you need to 
interpret particulate images in the chap-
ter. The Particulate Preview asks you to 
expand your prior knowledge and to 
speculate about the new concepts you 
will see in the chapter. It is also designed 
to focus your reading by asking you to 
look out for key terms and concepts.

As you develop your ability to visu-
alize atoms and molecules, you will find 
that you don’t have to resort to memo-
rizing formulas and reactions as a strat-
egy for surviving general chemistry. 
Instead, you will be able to understand 
why elements combine to form com-
pounds with particular formulas and 
why substances react with each other the 
way they do.

Preface

Phase Changes and Energy

In Chapter 9, we explore the energy changes that  
accompany both physical and chemical changes.  
Particulate representations of the three phases of  
water are shown here.

 Which representation depicts the solid phase of  
water? The liquid? The gaseous?

 Is energy added or released during the physical  
change from (a) to (b)? What intermolecular forces are involved?

 Describe the energy changes that accompany the physical changes from (a) to (c) and 
from (c) to (a).

(Review Section 1.4 and Section 6.2 if you need help answering these questions.)
(Answers to Particulate Review questions are in the back of the book.)

PARTICUL ATE REVIEW

(a) (b) (c)

Breaking Bonds and Energy Changes

Calcium chloride, shown in the accompanying figure, is used  
to melt ice on sidewalks. As you read Chapter 9, look for  
ideas that will help you understand the energy changes that  
accompany the breaking and forming of bonds.

 What kind of bonds must be broken for calcium chloride to  
dissolve in water? Is energy absorbed or released in order  
to break these bonds?

 Which color spheres represent the chloride ions? Label the polar covalent bonds in 
water using δ1 and δ2.

 What intermolecular interactions form as the salt dissolves? Is energy absorbed or 
released as these attractions form?

PARTICUL ATE PREVIEW
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Context
While our primary goal is for you to be able to interpret and even predict the 
physical and chemical properties of substances based on their atomic and molecu-
lar structures, we would also like you to understand how chemistry is linked to 
other scientific disciplines. We illustrate these connections using contexts drawn 
from fields such as biology, medicine, environmental science, materials science, 
and engineering. We hope that this approach helps you better understand how 
scientists apply the principles of chemistry to treat and cure diseases, to make 
more efficient use of natural resources, and to minimize the impact of human 
activity on our planet and its people.

Problem-Solving Strategies
Another major goal of our book is to help you improve your problem-solving 
skills. To do this, you first need to recognize the connections between the infor-
mation provided in a problem and the answer you are asked to find. Sometimes 

the hardest part of solving a problem is distinguishing 
between information that is relevant and information that is 
not. Once you are clear on where you are starting and where 
you are going, planning for and carrying out a solution 
become much easier.

To help you hone your problem-solving skills, we have 
developed a framework that we introduce in Chapter 1. It is a 
four-step approach we call coast, which is our acronym for  
(1) Collect and Organize, (2) Analyze, (3) Solve, and (4) Think 
About It. We use these four steps in every Sample Exercise and 
in the solutions to odd-numbered problems in the Student’s 
Solutions Manual. They are also used in the hints and feedback 
embedded in the Smartwork5 online homework program. To 
summarize the four steps:

Collect and Organize  helps you understand where to be-
gin to solve the problem. In this step we often rephrase the 
problem and the answer that is sought, and we identify the 
relevant information that is provided in the problem statement 
or available elsewhere in the book.

Analyze  is where we map out a strategy for solving the 
problem. As part of that strategy we often estimate what a 
reasonable answer might be.

Solve  applies our analysis of the problem from the sec-
ond step to the information and relations from the first step 
to actually solve the problem. We walk you through each 
step in the solution so that you can follow the logic and the 
math.

Think About It  reminds us that an answer is not the last step 
in solving a problem. We should check the accuracy of the 
solution and think about the value of a quantitative answer. Is 

9.6 Hess’s Law and Standard Enthalpies of Reaction  399

SAMPLE EXERCISE 9.8   Calculating DH°rxn Using Hess’s Law LO5

One reason furnaces and hot-water heaters fueled by natural gas need to be vented is 
that incomplete combustion can produce toxic carbon monoxide:

Equation A:  2 CH4(g) 1 3 O2(g) S 2 CO(g) 1 4 H2O(g)  DH °A 5 ?

Use thermochemical equations B and C to calculate DH °A:

Equation B: CH4(g) 1 2 O2(g) S CO2(g) 1 2 H2O(g) DH °B 5 2802 kJ

Equation C: 2 CO(g) 1 O2(g) S 2 CO2(g) DH °C 5 2566 kJ

Collect and Organize  We are given two equations (B and C) with thermochemical 
data and a third (A) for which we are asked to find DH °. All the reactants and products 
in equation A are present in B and/or C.

Analyze  We can manipulate equations B and C algebraically so that they sum to give 
the equation for which DH ° is unknown. Then we can calculate the unknown value by 
applying Hess’s law. Methane is a reactant in A and B, so we will use B in the direction 
written. CO is a product in A but a reactant in C, so we have to reverse C to get CO 
on the product side. Reversing C means that we must change the sign of DH °C. If the 
coefficients in B and the reverse of C do not allow us to sum the two equations to obtain 
equation A, we will need to multiply one or both by appropriate factors.

Solve  Comparing equation B as written and the reverse of C:

(B) CH4(g) 1 2 O2(g) S CO2(g) 1 2 H2O(g) DH °B 5 2802 kJ

(C, reversed) 2 CO2(g) S 2 CO(g) 1 O2(g) 2DH °C 5 1566 kJ

with equation A, we find that the coefficient of CH4 is 2 in A but only 1 in B, so we 
need to multiply all the terms in B by 2, including DH °B:

(2B)  2 CH4(g) 1 4 O2(g) S 2 CO2(g) 1 4 H2O(g)  2 DH °B 5 21604 kJ

When we sum C (reversed) and 2B, the CO2 terms cancel out and we obtain equation A:

(C, reversed) 2 CO2 1g2  S 2 CO(g) 1 O2 1g2  2DH°C 5 1566 kJ

1 (2B) 2 CH4(g) 1 4 O2 1g2  S 2 CO2 1g2  1 4 H2O(g) 2 DH°B 5 21604 kJ

(A) 2 CH4(g) 1 3 O2(g) S 2 CO(g) 1 4 H2O(g) DH°A 5 21038 kJ

Think About It  Our calculation shows that incomplete combustion of two moles of 
methane is less exothermic (DH°A 5 21038 kJ) than their complete combustion  
(2 DH°B 5 21604 kJ), which makes sense because the CO produced in incomplete 
combustion reacts exothermically with more O2 to form CO2. In fact, the value of  
DH°C for the reaction 2 CO(g) 1 O2(g) S 2 CO2(g) is the difference between 21604 kJ 
and 21038 kJ.

d Practice Exercise  It does not matter how you assemble the equations in a 
Hess’s law problem. Show that reactions A and C can be summed to give reaction 

B and result in the same value for DH°B.

3
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it realistic? Are the units correct? Is the number of significant figures appropriate? 
Does it agree with our estimate from the Analyze step?

Suggestion: Some Sample Exercises that are based on simple concepts and 
single-step solutions are streamlined by combining Collect, Organize, and Ana-
lyze steps, but the essential COAST features are always maintained.

Many students use the Sample Exercises more than any other part of the 
book. Sample Exercises take the concepts being discussed and illustrate how to 
apply them to solve problems. We think that repeated application of the coast 
framework will help you refine your problem-solving skills, and we hope that the 
approach will become habit-forming for you. When you finish a Sample Exercise, 
you’ll find a Practice Exercise to try on your own. The next few pages describe 
how to use the tools built into each chapter to gain a conceptual understanding of 
chemistry and to connect the microscopic structure of substances to their 
observable physical and chemical properties.

Chapter Structure
As mentioned earlier, each chapter begins with the Particulate Review and Par-
ticulate Preview to help you prepare for the material ahead.

If you are trying to decide what is most important in a chapter, check the 
Learning Outcomes listed on the first page. Whether you are reading the chap-
ter from first page to last or reviewing it for an exam, the Learning Outcomes 
should help you focus on the key information you need and the skills you should 
develop. You will also see which Learning Outcomes are linked to which Sample 
Exercises in the chapter.

LO1  Distinguish between isolated, closed 
and open thermodynamic systems and 
between endothermic and exothermic 
processes
Sample Exercise 9.1

LO2  Relate changes in the internal 
energies of thermodynamic systems to 
heat flows and work done
Sample Exercises 9.2, 9.3

LO3  Calculate the heat gained or lost 
during changes in temperature and 
physical state
Sample Exercises 9.4, 9.5

LO4  Use calorimetry data to calculate 
enthalpies of reaction and heat capacities 
of calorimeters
Sample Exercises 9.6, 9.7

LO5  Calculate enthalpies of reaction 
using Hess’s law and enthalpies of 
formation
Sample Exercises 9.8, 9.9, 9.10

LO6  Estimate enthalpies of reaction 
using average bond energies
Sample Exercise 9.11

LO7  Estimate enthalpies of solution and 
lattice energies using the Born–Haber 
cycle and Hess’s law
Sample Exercise 9.12

LO8  Calculate and compare fuel values 
and fuel densities
Sample Exercises 9.13, 9.14

Learning Outcomes

As you study each chapter, you will find key terms in boldface in the text and 
in a running glossary in the margin. We have deliberately duplicated these defini-
tions so that you can continue reading without interruption but quickly find them 
when doing homework or studying. All key terms are also defined in the Glossary 
in the back of the book.

Many concepts are related to others described earlier in the book. We point 
out these relationships with Connection icons in the margins. We hope they 
enable you to draw your own connections between major themes covered in the 
book.

C NNECTION In Chapter 1, we defined 
energy as the ability to do work. We also 
introduced the law of conservation of energy 
and the concept that energy cannot be 
created or destroyed but can be changed 
from one form of energy to another.
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To help you develop your own microscale view of matter, we use molecular 
art to enhance photos and figures, and to illustrate what is happening at the 
atomic and molecular levels.

If you’re looking for additional help visualizing a concept, we have about 100 
ChemTours, denoted by the ChemTour icon, available online at https://digital 
.wwnorton.com/atoms2. ChemTours demonstrate dynamic processes and help 
you visualize events at the molecular level. Many of the ChemTours allow you to 
manipulate variables and observe the resulting changes.

Concept Tests are short, conceptual questions that serve as self-checks by 
asking you to stop and answer questions related to what you just read. We designed 
them to help you see for yourself whether you have grasped a key concept and can 
apply it. We have an average of one Concept Test per section and many have 
visual components. We provide the answers to all Concept Tests in the back of 
the book.

CONCEPT TEST

Suppose two identical pots of water are heated on a stove until the water inside them 
begins to boil. Both pots are then removed from the stove. One of the two is covered 
with a tight lid; the other is not, and both are allowed to cool.

 a. What type of thermodynamic system— open, closed, or isolated— describes each 
of the cooling pots?

 b. Which pot cools faster? Why?

(Answers to Concept Tests are in the back of the book.)

At the end of each chapter is a special Sample Exercise that draws on several 
key concepts from the chapter and occasionally others from preceding chapters to 
solve a problem that is framed in the context of a real-world scenario or incident. 
We call these Integrated Sample Exercises. You may find them more challeng-
ing than most exercises that precede them in each chapter, but please invest your 
time in working through them because they represent authentic exercises that will 
enhance your problem-solving skills.

Also at the end of each chapter are a thematic Summary and a Problem-
Solving Summary. The first is a brief synopsis of the chapter, organized by learn-
ing outcomes. Key figures provide visual cues as you review. The Problem-Solving 
Summary is unique to this general chemistry book—​it outlines the different types 
of problems you should be able to solve, where to find examples of them in the 
Sample Exercises, and it reminds you of key concepts and equations.

Type of Problem Concepts and Equations Sample Exercises

Identifying 
endothermic and 
exothermic processes

During an endothermic process, heat flows into the system from its surroundings 
(q . 0). During an exothermic process, heat flows out from the system into its 
surroundings (q , 0).

9.1

Calculating P–V work w 5 2PDV 9.2

Relating DE, q, and w  DE 5 q 1 w 5 q 2 PDV (9.3, 9.4) 9.3

Calculating heat 
transfer (q) associated 
with a change of 
temperature or state 
of a substance 

Heating either an object:
 q 5 CP DT (9.8)
or a mass (m) of a pure substance:
 q 5 mcP DT (9.9)
or a quantity of a pure substance in moles (n):
 q 5 ncP,n DT (9.10)
Melting a solid at its melting point:
 q 5 nDHfus (9.11)
Vaporizing a liquid at its boiling point:
 q 5 nDHvap (9.12)

9.4, 9.5

Calculating Ccalorimeter 
and DHrxn from 
calorimetry data

qrxn 5 2qcalorimeter 5 2Ccalorimeter DT 9.6, 9.7

Calculating DHrxn 
using Hess’s law

Reorganize the information so that the reactions add together as desired. 
Reversing a reaction changes the sign of the reaction’s DHrxn value. Multiplying 

DHrxn value has to 
be multiplied by the same factor.

9.8

Recognizing formation 
reactions

The reactants must be elements in their standard states and the product must be 
one mole of a single compound.

9.9

ChemTour   
Bond Polarity and Polar Moelcules

https://digital.wwnorton.com/atoms2
https://digital.wwnorton.com/atoms2
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Following the summaries are groups of questions and 
problems. The first group consists of Visual Problems. In 
many of them, you are asked to interpret a molecular view of 
a sample or a graph of experimental data. The last Visual 
Problem in each chapter contains a Visual Problem Matrix. 
This grid consists of nine images followed by a series of 
questions that will test your ability to identify the similari-
ties and differences among the macroscopic, particulate, 
and symbolic images.

Concept Review Questions and Problems come next, 
arranged by topic in the same order as they appear in the 
chapter. Concept Reviews are qualitative and often ask you to 
explain why or how something happens. Problems are paired 
and can be quantitative, conceptual, or a combination of 
both. Contextual problems have a title that describes the 
context in which the problem is placed. Finally, Additional 
Problems can come from any section or combination of sec-
tions in the chapter. Some of them incorporate concepts from 
previous chapters. Problems marked with an asterisk (*) are 
more challenging and often take multiple steps to solve.

We want you to have confidence in using the answers in 
the back of the book as well as the Student’s Solutions Man-
ual, so we used a rigorous triple-check accuracy program for 
this book. Each end-of-chapter question or problem was 
solved independently by the Solutions Manual author, Karen 
Brewer, and by two additional chemical educators. Karen 
compared her solutions to those from the two reviewers and 
resolved any discrepancies. This process is designed to ensure 
clearly written problems and accurate answers in the appen-
dices and Solutions Manual.

Dear Instructor,
This book takes an atoms-focused approach to teaching chemistry. Conse-

quently, the sequence of chapters in the book and the sequence of topic in many 
of the chapters are not the same as in most general chemistry textbooks. For 
example, we devote the early chapters to providing an in-depth view of the par-
ticulate nature of matter including the structure of atoms and molecules and how 
the properties of substances link directly to those structures.

After two chapters on the nature of chemical bonding, molecular shape, and 
theories to explain both, we build on those topics as we explore the intermolecular 
forces that strongly influence the form and function of molecules, particularly 
those of biological importance.

Once this theoretical foundation has been laid, we examine chemical reactiv-
ity and the energetics of chemical reactions. Most general chemistry books don’t 
complete their coverage of chemistry and energy until late in the book. We finish 
the job in Chapter 12, which means that students already understand the roles of 
energy and entropy in chemical reactions before they encounter chemical kinetics 
and the question of how they happen. The kinetics chapter is followed by several 
on chemical equilibrium, which introduce the phenomenon in terms of what hap-
pens when reactions proceed to a measureable extent in both forward and reverse 
directions and how interactions between and within particles influence the con-
tacts that drive chemical changes.

 9.8. Use representations [A] through [I] in Figure P9.8 to 
answer questions a–f.
 a. Match two of the particulate images to the phase change 

for liquid nitrogen in [B].
 b. Match two of the particulate images to the phase change 

for dry ice (solid CO2) in [H].
 c. Which, if any, of the photos correspond to [D]? Are 

these endothermic or exothermic?
 d. Which, if any, of the photos correspond to [F]? Are 

these endothermic or exothermic?
 e. What bonds break when the solid ammonium nitrate in 

[E] dissolves in water to activate the cold pack?
 f. Which particulate images show an element or compound 

in its standard state?

A B C

D E F

G H I

∆H 
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FIGURE P9.8
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Changes in the Second Edition
As authors of a textbook, we are very often asked: “Why is a second edition neces-
sary? Has the science changed that much since the first edition?” Although chem-
istry is a vigorous and dynamic field, most basic concepts presented in an 
introductory course have not changed dramatically. However, two areas tightly 
intertwined in this text—​pedagogy and context—​have changed significantly, and 
those areas are the drivers of this new edition. Here are some of the most note-
worthy changes we made throughout this edition:

•	 We welcome Stacey Lowery Bretz as our new co-author. Stacey is a 
chemistry education researcher and her insights and expertise about accurate 
visual representations to support consistent pedagogy as well as about 
student misconceptions and effective ways to address them are evident 
throughout the book.

•	 The most obvious examples are the new Particulate Review and 
Particulate Preview questions at the beginning of each chapter. The 
Review is a diagnostic element highlighting important prior knowledge 
students must draw upon to successfully interpret molecular (particulate) 
images in the chapter. The Review consists of a few questions based on 
particulate art. The Preview consists of a short series of questions about a 
particulate image that ask students to extend their prior knowledge and 
speculate about material in the chapter. The goal of the Preview is to direct 
students as they read, making reading more interactive. Students are not 
expected to know the correct answers to the questions posed in the Preview 
before they start the chapter but are to use them as a guide while reading. 
Overviews of each Particulate Review and Preview section can be found in 
the Instructor’s Resource Manual and the lecture PowerPoints.

•	 In addition to the Particulate Review and Preview feature, Stacey authored a 
new type of visual problem: the Visual Problem Matrix. The matrix consists 
of macroscopic, particulate, and symbolic images in a grid, followed by a 
series of questions asking students to identify commonalities and differences 
across the images. Versions of all of these new problems are in the lecture 
PowerPoint slides to use in group activities and lecture quizzes. They are 
also available in Smartwork5 as individual problems and in pre-made 
assignments to use before or after class.

•	 We evaluated each Sample Exercise and streamlined many of those based 
on simple concepts and single-step solutions by combining the Collect and 
Organize and Analyze steps. We revised other Sample Exercises throughout 
the book based on reviewer and user feedback.

•	 The treatment of how to evaluate the precision and accuracy of experimental 
values in Chapter 1 has been expanded to include more rigorous treatment of 
the variability in data sets and in the identification of outliers.

•	 We have expanded our coverage of aqueous equilibrium by adding a second 
chapter that doubles the number of Sample Exercises and includes Concept 
Tests that focus on the molecules and ions present during titrations and in 
buffers.

•	 We took the advice of reviewers and now have two descriptive chemistry 
chapters at the end of the book. These chapters focus on main group 
chemistry and transition metals, both within the context of biological and 
medical applications.
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•	 We have revised or replaced at least 10% of the end-of-chapter problems. We 
incorporated feedback from users and reviewers to address areas where we 
needed more problems or additional problems of varying difficulty.

•	 A new version of Smartwork, Smartwork5, offers more than 3600 problems 
in a sophisticated and user-friendly platform. Four hundred new problems 
were designed to support the new visualization pedagogy. In addition to 
being tablet compatible, Smartwork5 integrates with the most common 
campus learning management systems.

The nearly 100 ChemTours have been updated to better support lecture, lab, 
and independent student learning. The ChemTours include images, animations, 
and audio that demonstrate dynamic processes and help students visualize and 
understand chemistry at the molecular level. Forty of the ChemTours now con-
tain greater interactivity and are assignable in Smartwork5. The ChemTours are 
linked directly from the ebook and are now in HTML5, which means they are 
tablet compatible.

Teaching and Learning Resources
Smarkwork5 Online Homework For General 
Chemistry
digital.wwnorton.com/atoms2
Smartwork5 is the most intuitive online tutorial and homework management 
system available for general chemistry. The many question types, including graded 
molecule drawing, math and chemical equations, ranking tasks, and interactive 
figures, help students develop and apply their understanding of fundamental con-
cepts in chemistry.

Every problem in Smartwork5 includes response-specific feedback and gen-
eral hints using the steps in COAST. Links to the ebook version of Chemistry: An 
Atoms-Focused Approach, Second Edition, take students to the specific place in the 
text where the concept is explained. All problems in Smartwork5 use the same 
language and notation as the textbook.

Smartwork5 also features Tutorial Problems. If students ask for help in a Tuto-
rial Problem, the system breaks the problem down into smaller steps, coaching 
them with hints, answer-specific feedback, and probing questions within each step. 
At any point in a Tutorial, a student can return to and answer the original problem.

Assigning, editing, and administering homework within Smartwork5 is easy. 
Smartwork5 allows the instructor to search for problems using both the text’s 
Learning Objectives and Bloom’s taxonomy. Instructors can use pre-made assign-
ment sets provided by Norton authors, modify those assignments, or create their 
own. Instructors can also make changes in the problems at the question level. All 
instructors have access to our WYSIWYG (What You See Is What You Get) 
authoring tools—​the same ones Norton authors use. Those intuitive tools make it 
easy to modify existing problems or to develop new content that meets the specific 
needs of your course.

Wherever possible, Smartwork5 makes use of algorithmic variables so that 
students see slightly different versions of the same problem. Assignments are 
graded automatically, and Smartwork5 includes sophisticated yet flexible tools for 
managing class data. Instructors can use the class activity report to assess 

http://digital.wwnorton.com/atoms2
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students’ performance on specific problems within an assignment. Instructors can 
also review individual students’ work on problems.

Smartwork5 for Chemistry: An Atoms-Focused Approach, Second Edition, fea-
tures the following problem types:

•	 End-of-Chapter Problems. These problems, which use algorithmic variables 
when appropriate, all have hints and answer-specific feedback to coach 
students through mastering single- and multi-concept problems based on 
chapter content. They make use of all of Smartwork5’s answer-entry tools.

•	 ChemTour Problems. Forty ChemTours now contain greater interactivity 
and are assignable in Smartwork5.

•	 Visual and Graphing Problems. These problems challenge students 
to identify chemical phenomena and to interpret graphs. They use 
Smartwork5’s Drag-and-Drop and Hotspot functionality.

•	 Reaction Visualization Problems. Based on both static art and videos of 
simulated reactions, these problems are designed to help students visualize 
what happens at the atomic level—​and why it happens.

•	 Ranking Task Problems. These problems ask students to make comparative 
judgments between items in a set.

•	 Nomenclature Problems. New matching and multiple-choice problems help 
students master course vocabulary.

•	 Multistep Tutorials. These problems offer students who demonstrate a need 
for help a series of linked, step-by-step subproblems to work. They are based 
on the Concept Review problems at the end of each chapter.

•	 Math Review Problems. These problems can be used by students for practice 
or by instructors to diagnose the mathematical ability of their students.

Ebook
digital.wwnorton.com/atoms2
An affordable and convenient alternative to the print text, the Norton Ebook lets 
students access the entire book and much more: they can search, highlight, and 
take notes with ease. The Norton Ebook allows instructors to share their notes 
with students. And the ebook can be viewed on most devices—​laptop, tablet, 
even a public computer—​and will stay synced between devices.

The online version of Chemistry: An Atoms-Focused Approach, Second Edition, 
also provides students with one-click access to the nearly 100 ChemTour 
animations.

The online ebook is available bundled with the print text and Smartwork5 at 
no extra cost, or it may be purchased bundled with Smartwork5 access.

Norton also offers a downloadable PDF version of the ebook.

Student’s Solutions Manual
by Karen Brewer, Hamilton University
The Student’s Solutions Manual provides students with fully worked solutions to 
select end-of-chapter problems using the COAST four-step method (Collect and 
Organize, Analyze, Solve, and Think About It). The Student’s Solutions Manual 
contains several pieces of art for each chapter, designed to help students visualize 
ways to approach problems. This artwork is also used in the hints and feedback 
within Smartwork.

http://digital.wwnorton.com/atoms2
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Clickers in Action: Increasing Student 
Participation in General Chemistry
by Margaret Asirvatham, University of Colorado, Boulder
This instructor-oriented resource provides information on implementing clickers 
in general chemistry courses. Clickers in Action contains more than 250 class-
tested, lecture-ready questions, with histograms showing student responses, as 
well as insights and suggestions for implementation. Question types include mac-
roscopic observation, symbolic representation, and atomic/molecular views of 
processes.

Test Bank
by Daniel E. Autrey, Fayetteville State University
Norton uses an innovative, evidence-based model to deliver high-quality  
and pedagogically effective quizzes and testing materials. Each chapter of the 
Test Bank is structured around an expanded list of student learning objectives 
and evaluates student knowledge on six distinct levels based on Bloom’s Tax-
onomy: Remembering, Understanding, Applying, Analyzing, Evaluating, and 
Creating.

Questions are further classified by section and difficulty, making it easy to 
construct tests and quizzes that are meaningful and diagnostic, according to each 
instructor’s needs. More than 2500 questions are divided into multiple choice and 
short answer.

The Test Bank is available with ExamView Test Generator software, allowing 
instructors to effortlessly create, administer, and manage assessments. The conve-
nient and intuitive test-making wizard makes it easy to create customized exams 
with no software learning curve. Other key features include the ability to create 
paper exams with algorithmically generated variables and export files directly to 
Blackboard, Canvas, Desire2Learn, and Moodle.

Instructor’s Solutions Manual
by Karen Brewer, Hamilton University
The Instructor’s Solutions Manual provides instructors with fully worked solu-
tions to every end-of-chapter Concept Review and Problem. Each solution uses 
the COAST four-step method (Collect and Organize, Analyze, Solve, and 
Think About It).

Instructor’s Resource Manual
by Anthony Fernandez, Merrimack College
This complete resource manual for instructors has been revised to correspond to 
changes made in the Second Edition. Each chapter begins with a brief overview 
of the text chapter followed by suggestions for integrating the contexts featured in 
the book into a lecture, summaries of the textbook’s Particulate Review and Pre-
view sections, suggested sample lecture outlines, alternate contexts to use with 
each chapter, and instructor notes for suggested activities from the ChemConnec-
tions and Calculations in Chemistry, Second Edition, workbooks. Suggested 
ChemTours and laboratory exercises round out each chapter.



xxviii    Preface

Instructor’s Resource Disc
This helpful classroom presentation tool features the following:

•	 Stepwise animations and classroom response questions are included. 
Developed by Jeffrey Macedone of Brigham Young University and his team, 
these animations, which use native PowerPoint functionality and textbook 
art, help instructors to walk students through nearly 100 chemical concepts 
and processes. Where appropriate, the slides contain two types of questions 
for students to answer in class: questions that ask them to predict what 
will happen next and why, and questions that ask them to apply knowledge 
gained from watching the animation. Self-contained notes help instructors 
adapt these materials to their own classrooms.

•	 Lecture PowerPoint slides (authored by Cynthia Lamberty, Cloud County 
Community College) include a suggested classroom-lecture script in an 
accompanying Word file. Each chapter opens with a set of multiple-choice 
questions based on the textbook’s Particulate Review and Preview section 
and concludes with another set of questions based on the textbook’s Visual 
Problems matrix.

•	 All ChemTours are included.
•	 Clickers in Action clicker questions for each chapter provide instructors with 

class-tested questions they can integrate into their course.
•	 Labeled and unlabeled photographs, drawn figures, and tables from the text 

are available in PowerPoint and JPEG.

Downloadable Instructor’s Resources
digital.wwnorton.com/atoms2
This password-protected site for instructors includes the following:

•	 Stepwise animations and classroom response questions are included. 
Developed by Jeffrey Macedone of Brigham Young University and his team, 
these animations, which use native PowerPoint functionality and textbook 
art, help instructors to walk students through nearly 100 chemical concepts 
and processes. Where appropriate, the slides contain two types of questions 
for students to answer in class: questions that ask them to predict what 
will happen next and why, and questions that ask them to apply knowledge 
gained from watching the animation. Self-contained notes help instructors 
adapt these materials to their own classrooms.

•	 Lecture PowerPoints are available.
•	 All ChemTours are included.
•	 Test bank is available in PDF, Word RTF, and ExamView Assessment Suite 

formats.
•	 Solutions Manual is offered in PDF and Word, so that instructors may edit 

solutions.
•	 All end-of-chapter questions and problems are available in Word along with 

the key equations.
•	 Labeled and unlabeled photographs, drawn figures, and tables from the text 

are available in PowerPoint and JPEG.
•	 Clickers in Action clicker questions are included.

http://digital.wwnorton.com/atoms2
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•	 Course cartridges: Available for the most common learning management 
systems, course cartridges include access to the ChemTours and StepWise 
animations, links to the ebook and Smartwork5.
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An Atoms-Focused Approach



2

Matter and Energy
An Atomic Perspective

1

Solids, Liquids, and Gases

In Chapter 1, we explore the particulate nature of  
matter. Chemists use colored spheres to represent  
atoms of different elements. Liquid nitrogen (an  
element) can be used to make ice cream while dry  
ice (solid carbon dioxide) is used to keep ice cream  
cold on a hot day.

●	 Which representation depicts liquid nitrogen?

●	 Which representation depicts dry ice?

●	 Which representation depicts carbon dioxide vapor?
(Answers to Particulate Review questions are in the back of the book.)

Bronze Age Battle Gear  This 
Greek shield decoration from the 6th 
century bce is made of bronze, which is 
a mixture of copper and tin atoms. Tin 
atoms create irregularities in the layers 
of copper atoms in bronze. As a result, 
the layers do not pass each other as 
easily, making bronze objects harder 
and less easily deformed than copper 
objects.

Particul ate review

(a) (b) (c)



3

Elements versus Compounds

The bronze shield on this page is a mixture of copper and tin atoms.  
Some of the representations shown depict a molecule made of two  
atoms or an array made from two ions. As you read Chapter 1, look for  
ideas that will help you answer these questions:

●	 Which representation depicts molecules of a compound?

●	 Which representation depicts molecules of an element?

●	 Which representation depicts a compound consisting of an array  
of ions?

●	 Which representation depicts an element consisting of an array  
of atoms?

Particul ate preview

(a) (b)

(c) (d)



4    chapter 1   Matter and Energy

1.1	 Exploring the Particulate  
Nature of Matter

Atoms and Atomism
The chapter-opening photo shows a Greek shield decoration from the 6th century 
bce. It’s made of bronze, which is a blend of copper and tin. For thousands of 
years ancient craftsmen produced bronze using furnaces blazing with mixtures of 
fuel, such as wood or charcoal, and chunks of metal-containing minerals. When 
the minerals in the furnace contained copper and lesser amounts of tin, the bronze 
that was produced could be fashioned into tools and weapons that were much 
stronger and more durable than those made of copper alone.

To ancient metalworkers, turning minerals into metals was more art than sci-
ence. They knew how to build and operate metal-producing furnaces, called smelters, 
but they had little understanding of the chemical changes that, for example, con-
verted copper minerals into copper metal. Today we know what those changes are, 
and we can explain why mixtures of metals such as bronze are much stronger than 
their parent metals, because we know the structures of these materials at the atomic level.

We know, for example, that the atoms in copper metal are arranged in ordered, 
tightly packed layers, as shown in the opening photo. Copper wire or foil is easily 
bent because the layers of copper atoms can slide past each other when subjected 
to an external force. When slightly larger atoms of tin are also present as shown 
in the magnified view in the opening photo, the resulting imperfections inhibit 
the layers of copper atoms from sliding past each other. An object made of bronze, 
therefore, is much harder to bend than if it were made of pure copper. As a result, 
Bronze Age tools and weapons held their shape better, stayed sharper longer, and, 
in the case of shields and body armor, provided better protection for warriors in 
battle.

In this chapter we begin an exploration of how the properties of materials 
are linked to their atomic-level structure. As we do, we need to acknowledge 
the Greek philosophers of the late Bronze Age who espoused atomism, a belief 

LO1 ​ Describe the scientific method

LO2 ​ Apply the coast approach to 
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LO3 ​ Distinguish between the classes 
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Sample Exercises 1.1–1.3

LO4 ​ Describe the states of matter and how 
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by the particulate nature of matter 
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three-dimensional arrangement of the 
atoms in compounds
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values with the appropriate number of 
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set of units to another 
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in ways that accurately convey their 
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Learning Outcomes

atom the smallest particle of an element 
that retains the chemical characteristics 
of the element.

scientific theory a concise explanation 
of widely observed phenomena that has 
been extensively tested.

element a substance that cannot be 
separated into simpler substances by 
any chemical process.
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that all forms of matter are composed of extremely tiny, indestructible building 
blocks called atoms. Atomism is an example of a natural philosophy; it is not a 
scientific theory. The difference between the two is that while both seek to 
explain natural phenomena, scientific theories are concise explanations of nat-
ural phenomena based on observation and experimentation, and they are tes-
table. An important quality of a valid scientific theory is that it accurately 
predicts the results of future experiments and can even serve as a guide to 
designing those experiments. The ancient Greeks did not have the technology 
to test whether matter really is made of atoms—​but we do.

Consider the images in Figure 1.1. On the bottom is a photograph of silicon 
(Si) wafers, the material used today to make computer chips and photovoltaic 
cells. The magnified view above it is a photomicrograph of a silicon wafer pro-
duced by an instrument called a scanning tunneling microscope (STM).1 The 
fuzzy spheres are individual atoms of silicon, the smallest representative particles 
of silicon. If you could grind a sample of pure silicon into the finest dust imag-
inable, the tiniest particle of the dust you could obtain that still had the properties 
of silicon would be an atom of silicon.

Atomic Theory: The Scientific  
Method in Action
Scanning tunneling microscopes have been used to image atoms since the early 
1980s, but the scientific theory that matter was composed of atoms evolved two 
centuries earlier during a time when chemists in France and England made enor-
mous advances in our understanding of the composition of matter. Among them 
was French chemist Antoine Lavoisier (1743–1794), who published the first mod-
ern chemistry textbook in 1789. It contained a list of substances that he believed 
could not be separated into simpler substances. Today we call such “simple” sub-
stances elements (Figure 1.2). The silicon in Figure 1.1 is an element, as are 
copper and tin. The periodic table of the elements inside the front cover of this 
textbook contains over 100 others.

FIGURE 1.1 ​ Silicon wafers are widely 
used to make computer chips and 
photovoltaic cells for solar panels. Since the 
1980s, scientists have been able to image 
individual atoms using an instrument called 
a scanning tunneling microscope (STM). 
In the STM image (top), the irregular 
shapes are individual silicon atoms. The 
radius of each atom is 117 picometers (pm), 
or 117 trillionths of a meter. Atoms are the 
tiniest particles of silicon that still retain 
the chemical characteristics of silicon.

1German physicist Gerd Binnig (b. 1947) and Swiss physicist Heinrich Rohrer (1933–2013) shared the 
1986 Nobel Prize in Physics for their development of scanning tunneling microscopy.

Can it be
separated by a

physical process?

Can it be
decomposed by

a chemical process?

Is it
uniform

throughout?

YesNo

No Yes Yes No

Element Compound Homogeneous Heterogeneous

Ice (water)Pure gold Vinegar Salad dressing

Pure
substance Mixture

All matter

FIGURE 1.2 ​ Matter is classified as 
shown in this diagram. The two principal 
categories are pure substances and 
mixtures. A substance may be a compound 
(such as water) or an element (such as gold). 
When the substances making up a mixture 
are distributed uniformly, as they are in 
vinegar (a mixture of acetic acid and water), 
the mixture is homogeneous. When the 
substances making up a mixture are not 
distributed uniformly, as in salad dressing, 
the mixture is heterogeneous.
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Lavoisier and other scientists conducted experiments that examined the pat-
terns in how elements combined with other elements to form compounds. These 
experiments followed a systematic approach to investigating and understanding 
natural phenomena known as the scientific method (Figure 1.3). When such 
investigations reveal consistent patterns and relationships, they may be used to 
formulate concise descriptions of fundamental scientific truths. These descrip-
tions are known as scientific laws.

When the French chemist Joseph Louis Proust (1754–1826) studied the com-
position of compounds containing different metals and oxygen, he concluded that 
these compounds always contained the same proportions of their component ele-
ments. His law of definite proportions applies to all compounds. An equivalent 
law, known as the law of constant composition, states that a compound always 
has the same elemental composition by mass no matter what its source. Thus, the 
composition of pure water is always the same: 11.2% by mass hydrogen and 88.8% 
by mass oxygen.

When Proust published his law of definite proportions, some of the leading 
chemists of the time refused to believe it. Their own experiments seemed to show, 
for example, that the compound that tin formed with oxygen had variable tin 
content. These scientists did not realize that their samples were actually mixtures 
of two different compounds with different compositions, which Proust was able 
to demonstrate. Still, acceptance of Proust’s law required more than corroborating 
results from other scientists; it also needed to be explained by a scientific theory. 
That is, there needed to be a convincing argument that explained why the compo-
sition of a compound was always the same.

Scientific laws and theories complement each other in that scientific laws 
describe natural phenomena and relationships, and scientific theories explain why 
these phenomena and relationships are always observed. Scientific theories usu-
ally start out as tentative explanations of why a set of experimental results was 
obtained or why a particular phenomenon is consistently observed. Such a tenta-
tive explanation is called a hypothesis (Figure 1.3). An important feature of a 
hypothesis is that it can be tested through additional observations and experi-
ments. A hypothesis also enables scientists to accurately predict the likely out-
comes of future observations and experiments. Further testing and observation 
might support a hypothesis or disprove it, or perhaps require that it be modified. 
A hypothesis that withstands the tests of many experiments, accurately explain-
ing further observations and accurately predicting the results of additional exper-
imentation, may be elevated to the rank of scientific theory.

Observe natural 
phenomena

Propose tentative 
explanation (hypothesis)

Generate predictions 
to test hypothesis

Test the 
hypothesis

Design an experiment
Carry out the experiment

Analyze the 
results

Accept the 
hypothesis

Continue to test in light of additional observations

Reject the hypothesis

Modify the hypothesis

Re�ne the experiment 

Establish a theory 
(or model)

Communicate 
to peers

FIGURE 1.3 ​ In the scientific method, 
observations lead to a tentative explanation, 
or hypothesis, which leads to more 
observations and testing, which may 
lead to the formulation of a succinct, 
comprehensive explanation called a theory. 
This process is rarely linear: it often involves 
looping back, because the results of one 
test lead to additional tests and a revised 
hypothesis. Science, when done right, is a 
dynamic and self-correcting process.
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A scientific theory explaining Proust’s law of definite proportions was pro-
posed by John Dalton (1766–1844) in 1803. Whereas Proust studied the compo-
sition of the solid compounds formed by metals and oxygen, Dalton’s own research 
focused on the composition and behavior of gases. Dalton observed that when 
two elements combine to form gaseous compounds, they may form two or more 
different compounds with different compositions. Similarly, Proust had discov-
ered that tin (Sn) and oxygen (O) combined to form one compound that was 
88.1% by mass Sn and 11.9% O and a second compound that was 78.8% Sn and 
21.2% O. Dalton noted that the ratio of oxygen to tin in the second compound,

21.2% O
78.8% Sn

5 0.269

was very close to twice of what it was in the first compound,

11.9% O
88.1% Sn

5 0.135

Similar results were obtained with other sets of compounds formed by pairs of 
elements. Sometimes their compositions would differ by a factor of 2, as with 
oxygen and tin (and with oxygen and carbon), and sometimes their compositions 
differed by other factors, but in all cases they differed by ratios of small whole num-
bers. This pattern led Dalton to formulate the law of multiple proportions: when 
two elements combine to make two (or more) compounds, the ratio of the masses 
of one of the elements, which combine with a given mass of the second element, 
is always a ratio of small whole numbers. For example, 15 grams of oxygen com-
bines with 10 grams of sulfur under one set of reaction conditions, whereas only 
10 grams of oxygen combines with 10 grams of sulfur to form a different com-
pound under a different set of reaction conditions. The ratio of the two masses of 
oxygen,

15 g oxygen
10 g oxygen

5
3
2

is indeed a ratio of two small whole numbers and is consistent with Dalton’s law 
of multiple proportions.

To explain the laws of definite proportions and multiple proportions, Dalton 
proposed the scientific theory that elements are composed of atoms. Thus, Proust’s 
compound with the O:Sn ratio of 0.135 contains one atom of oxygen for each 
atom of tin, whereas his compound with twice that O:Sn ratio (0.269) contains 
two atoms of O per atom of Sn. These atomic ratios are reflected in the chemical 
formulas of the two compounds: SnO and SnO2, in which the subscripts after 
the symbols represent the relative number of atoms of each element in the sub-
stance. The absence of a subscript means the formula contains one atom of the 
preceding element. Similarly, the two compounds that sulfur and oxygen form 
have an oxygen ratio of 3:2 because their chemical formulas are SO3 and SO2, 
respectively.

Since the early 1800s, scientists have learned much more about the atomic, 
and even subatomic, structure of the matter that makes up our world and the 
universe that surrounds us. Although the laws developed two centuries ago are 
still useful, Dalton’s atomic theory, like many theories, has undergone revisions as 
new discoveries have been made. Dalton assumed, for example, that all of the 
atoms of a particular element were the same. We will see in Chapter 2 that atoms 
have internal components and structures, only some of which are the same for all 
the atoms of a given element. Atoms can differ in other ways, too, that the scien-
tists of 1800 could not have observed or even imagined.

compound a substance composed of 
characteristic proportions of two or more 
elements chemically bonded together.

scientific method an approach 
to acquiring knowledge based on 
the observation of phenomena, the 
development of a testable hypothesis, 
and additional experiments that test the 
validity of the hypothesis.

scientific law a concise and generally 
applicable statement of a fundamental 
scientific principle.

law of definite proportions the 
principle that compounds always contain 
the same proportions of their component 
elements.

law of constant composition the 
principle that all samples of a particular 
compound have the same elemental 
composition.

hypothesis a tentative and testable 
explanation for an observation or a 
series of observations.

law of multiple proportions the 
principle that, when two masses of one 
element react with a given mass of 
another element to form two different 
compounds, the two masses of the first 
element have a ratio of two small whole 
numbers.

chemical formula a notation for 
representing the elemental composition 
of a pure substance using the symbols 
of the elements; subscripts indicate 
the relative number of atoms of each 
element in the substance.
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1.2	 coast: A Framework  
for Solving Problems

Throughout the rest of this chapter and this book, you will find Sample Exercises 
designed to help you better understand chemical concepts and develop your problem-
solving skills. Each Sample Exercise follows a systematic approach to problem solv-
ing that we encourage you to apply to the Practice Exercises that follow each Sample 
Exercise and to the end-of-chapter problems. We use the acronym coast (Collect 
and Organize, Analyze, Solve, and Think about the answer) to represent the four 
steps in our approach to problem solving. As you read about it here and use it later, 
keep in mind that coast is merely a framework for solving problems, not a recipe. 
Use it as a guide to help you develop your own approach to solve each problem.

Collect and Organize ​ First, start by sorting through the information given in 
the problem and identifying other relevant information. These actions help you 
understand the problem, including the fundamental chemical principles on which 
it is based. As part of the collecting and organizing process,
•	 Identify the key concept of the problem.
•	 Identify and define the key terms used to express that concept. You may find 

it useful to restate the problem in your own words.
•	 Sort through the information given in the problem, separating what is 

pertinent from what is not.
•	 Assemble any supplemental information that may be needed, including 

equations, definitions, and constants.

Analyze ​ The next step is to analyze the information you have collected to deter-
mine how to relate it to the answer you seek. Sometimes it is easier to work back-
ward to create the relationships: consider the nature of the answer first, and think 
about how you might get to it from the information provided in the problem and 
other sources. If the problem is quantitative and requires a numerical answer, 
frequently the units of the initial values and the final answer will help you identify 
how they are connected and which equation (or equations) may be useful.

For some problems, drawing a sketch based on molecular models or an exper-
imental setup may help you visualize how the starting points and final answer are 
connected. You should also look at the numbers involved and estimate your 
answer. Having an order-of-magnitude (“ballpark”) estimate of your final answer 
before entering numbers into your calculator provides a check on the accuracy of 
your calculated answer.

Some Sample Exercises test your understanding of a single concept or their 
solution involves only a single step. In these exercises we may combine the Collect 
and Organize and the Analyze steps.

Solve ​ For most conceptual questions, the solution flows directly from your anal-
ysis of the problem. To solve quantitative problems, you need to insert the starting 
values and the appropriate constants into the relevant equations or conversion 
factors and calculate the answer. In the Solve step, make sure that units are con-
sistent and cancel as needed and that the certainty of the quantitative information 
is reflected in how many significant figures (see Section 1.7) you used.

Think About It ​ Finally, you need to think about your result. Does your answer 
make sense based on your own experience and what you have just learned? Is the 
value for a quantitative answer reasonable—is it close to your estimate from the 
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Analyze step? Are the units correct and the number of significant figures appro-
priate? Then ask yourself how confident you are that you could solve another 
problem, perhaps drawn from another context but based on the same chemical 
concept. You may also think about how this problem relates to other observations 
you may have made about matter in your daily life.

The coast approach should help you solve problems in a logical way and avoid 
certain pitfalls, such as grabbing an equation that seems to have the right variables 
and simply plugging numbers into it or resorting to trial and error. As you study 
the steps in each Sample Exercise, try to answer these questions about each step:
•	 What is done in this step?
•	 How is it done?
•	 Why is it done?

After answering the questions, you will be ready to solve the Practice Exercises 
and end-of-chapter problems in a systematic way.

1.3	 Classes and Properties of Matter
All things that are physically real—​from the air we breathe to the ground we walk 
on—​are forms of matter. Scientists define matter as everything in the universe that 
has mass (m) and occupies space. Chemistry is the study of 
the composition, structure, and properties of matter and the 
changes it undergoes.

Matter is classified based on its composition, as shown 
in Figure 1.2. The simplest forms of matter—​elements and 
compounds—​are pure substances with compositions that 
do not change unless they are involved in a chemical reac-
tion. They also have distinctive properties. Pure gold, for 
example (Figure 1.4a), has a distinctive color; it’s soft for a 
metal, it’s malleable (it can be hammered into very thin 
sheets called gold leaf), it’s ductile (it can be drawn into thin 
wires), and it melts at 1064°C. These properties, which 
characterize a pure substance but are independent of the 
amount of the substance in a sample, are called intensive 
properties. Other properties, such as the particular length, 
width, mass, and volume of an ingot of gold, are called 
extensive properties because they depend on how much of 
the substance is present in a particular sample.

The properties of substances are either physical or chemical. 
Physical properties, such as those described for gold in the 
previous paragraph, can be observed or measured without 
changing the substance into another substance. Another physical property is den-
sity (d), which is the ratio of the mass (m) of a substance or object to its volume (V):

	 d 5
m
V

	 (1.1)

concept test

Which of the following properties of a sample of pure iron are intensive? (a) mass,  
(b) density, (c) volume, (d) hardness

(Answers to Concept Tests are in the back of the book.)

matter anything that has mass and 
occupies space.

mass (m) the property that defines the 
quantity of matter in an object.

chemistry the study of the composition, 
structure, and properties of matter and of 
the energy consumed or given off when 
matter undergoes a change.

intensive property a property that is 
independent of the amount of substance 
present.

extensive property a property that varies 
with the amount of substance present.

physical property a property of a 
substance that can be observed without 
changing the substance into another 
substance.

density (d) the ratio of the mass (m) of 
an object to its volume (V).

(a)

(b)

FIGURE 1.4 ​ (a) Gold and (b) sulfur are 
among the few elements that may occur in 
nature uncombined with other elements.




